10 research outputs found

    The Suborbital Particle Aggregation and Collision Experiment (SPACE): Studying the Collision Behavior of Submillimeter-Sized Dust Aggregates on the Suborbital Rocket Flight REXUS 12

    Full text link
    The Suborbital Particle Aggregation and Collision Experiment (SPACE) is a novel approach to study the collision properties of submillimeter-sized, highly porous dust aggregates. The experiment was designed, built and carried out to increase our knowledge about the processes dominating the first phase of planet formation. During this phase, the growth of planetary precursors occurs by agglomeration of micrometer-sized dust grains into aggregates of at least millimeters to centimeters in size. However, the formation of larger bodies from the so-formed building blocks is not yet fully understood. Recent numerical models on dust growth lack a particular support by experimental studies in the size range of submillimeters, because these particles are predicted to collide at very gentle relative velocities of below 1 cm/s that can only be achieved in a reduced-gravity environment. The SPACE experiment investigates the collision behavior of an ensemble of silicate-dust aggregates inside several evacuated glass containers which are being agitated by a shaker to induce the desired collisions at chosen velocities. The dust aggregates are being observed by a high-speed camera, allowing for the determination of the collision properties of the protoplanetary dust analog material. The data obtained from the suborbital flight with the REXUS (Rocket Experiments for University Students) 12 rocket will be directly implemented into a state-of-the-art dust growth and collision model

    Determination of measurement uncertainty by Monte Carlo simulation

    Full text link
    Modern coordinate measurement machines (CMM) are universal tools to measure geometric features of complex three-dimensional workpieces. To use them as reliable means of quality control, the suitability of the device for the specific measurement task has to be proven. Therefore, the ISO 14253 standard requires, knowledge of the measurement uncertainty and, that it is in reasonable relation with the specified tolerances. Hence, the determination of the measurement uncertainty, which is a complex and also costly task, is of utmost importance. The measurement uncertainty is usually influenced by several contributions of various sources. Among those of the machine itself, e.g., guideway errors and the influence of the probe and styli play an important role. Furthermore, several properties of the workpiece, such as its form deviations and surface roughness, have to be considered. Also the environmental conditions, i.e., temperature and its gradients, pressure, relative humidity and others contribute to the overall measurement uncertainty. Currently, there are different approaches to determine task-specific measurement uncertainties. This work reports on recent advancements extending the well-established method of PTB's Virtual Coordinate Measuring Machine (VCMM) to suit present-day needs in industrial applications. The VCMM utilizes numerical simulations to determine the task-specific measurement uncertainty incorporating broad knowledge about the contributions of, e.g., the used CMM, the environment and the workpiece

    Microgravity experiments on the collisional behavior of Saturnian ring particles

    Full text link
    In this paper we present results of two novel experimental methods to investigate the collisional behavior of individual macroscopic icy bodies. The experiments reported here were conducted in the microgravity environments of parabolic flights and the Bremen drop tower facility. Using a cryogenic parabolic-flight setup, we were able to capture 41 near-central collisions of 1.5-cm-sized ice spheres at relative velocities between 6 and 22cms122 \mathrm{cm s^{-1}}. The analysis of the image sequences provides a uniform distribution of coefficients of restitution with a mean value of ε=0.45\overline{\varepsilon} = 0.45 and values ranging from ε=0.06\varepsilon = 0.06 to 0.84. Additionally, we designed a prototype drop tower experiment for collisions within an ensemble of up to one hundred cm-sized projectiles and performed the first experiments with solid glass beads. We were able to statistically analyze the development of the kinetic energy of the entire system, which can be well explained by assuming a granular `fluid' following Haff's law with a constant coefficient of restitution of ε=0.64\varepsilon = 0.64. We could also show that the setup is suitable for studying collisions at velocities of <5mms1< 5 \mathrm{mm s^{-1}} appropriate for collisions between particles in Saturn's dense main rings.Comment: Accepted for publication in the Icarus Special Issue "Cassini at Saturn

    Methodology to Evaluate the Performance of Portable Photogrammetry for Large-Volume Metrology

    No full text
    The increased relevance of large-volume metrology (LVM) in industrial applications entails certain challenges: measurements must be cost-efficient and the technologies must be easy to use while ensuring accuracy and reliability. Portable photogrammetry shows great potential to overcome such challenges, but industrial users do not yet rely on its accuracy for large scenarios (3 to 64 m), especially when mass-market cameras are not conceived of as industrial metrology instruments. Furthermore, the measurement results might also depend on the operator’s skills and knowledge of the key process variables. In this work, a methodology was designed so that the measurement uncertainty of portable photogrammetry can be evaluated under controlled conditions for LVM. To do so, PTB’s reference wall, which was designed to assess laser-based methods applied to large volumes, was used as a reference artefact to study the measurement performance under different conditions, enabling an analysis of the relative influence of two process variables: the spatial arrangement of the optical instruments on the scene, and the relative camera poses for an accurate triangulation. According to these variables, different measuring conditions were designed (Monte Carlo analysis), and experimentally evaluated and reported (LME, length measuring errors), analysing the performance figures expected from both unskilled and expert users

    GUM-Compliant Uncertainty Evaluation Using Virtual Experiments

    No full text
    A virtual experiment simulates a real measurement process by means of a numerical model. The numerical model produces virtual data whose properties reflect those of the data observed in the real experiment. In this work, we explore how the results of a virtual experiment can be employed in the context of uncertainty evaluation for a corresponding real experiment. The uncertainty evaluation was based on the Guide to the Expression of Uncertainty in Measurement (GUM), which defines the de facto standard for uncertainty evaluation in metrology. We show that, under specific assumptions about model structure and variance of the data, virtual experiments in combination with a Monte Carlo method lead to an uncertainty evaluation for the real experiment that is in line with Supplement 1 to the GUM. In the general case, a GUM-compliant uncertainty evaluation in the context of a real experiment can no longer be based on a corresponding virtual experiment in a simple way. Nevertheless, virtual experiments are still useful in order to increase the reliability of an uncertainty analysis. Simple generic examples as well the case study of a virtual coordinate measuring machine are presented to illustrate the treatment
    corecore